Copied to
clipboard

G = C22⋊Dic26order 416 = 25·13

The semidirect product of C22 and Dic26 acting via Dic26/Dic13=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C221Dic26, C23.12D26, Dic13.14D4, (C2×C26)⋊Q8, C523C42C2, (C2×C4).5D26, C2.6(D4×D13), C26.4(C2×Q8), C26.16(C2×D4), C131(C22⋊Q8), (C2×Dic26)⋊2C2, C26.D44C2, (C2×C52).1C22, C22⋊C4.1D13, C2.6(C2×Dic26), C26.21(C4○D4), (C2×C26).19C23, C23.D13.2C2, C2.6(D42D13), (C22×C26).8C22, (C2×Dic13).5C22, (C22×Dic13).3C2, C22.39(C22×D13), (C13×C22⋊C4).1C2, SmallGroup(416,99)

Series: Derived Chief Lower central Upper central

C1C2×C26 — C22⋊Dic26
C1C13C26C2×C26C2×Dic13C22×Dic13 — C22⋊Dic26
C13C2×C26 — C22⋊Dic26
C1C22C22⋊C4

Generators and relations for C22⋊Dic26
 G = < a,b,c,d | a2=b2=c52=1, d2=c26, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 424 in 74 conjugacy classes, 35 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C13, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C26, C26, C22⋊Q8, Dic13, Dic13, C52, C2×C26, C2×C26, C2×C26, Dic26, C2×Dic13, C2×Dic13, C2×C52, C22×C26, C26.D4, C523C4, C23.D13, C13×C22⋊C4, C2×Dic26, C22×Dic13, C22⋊Dic26
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, D13, C22⋊Q8, D26, Dic26, C22×D13, C2×Dic26, D4×D13, D42D13, C22⋊Dic26

Smallest permutation representation of C22⋊Dic26
On 208 points
Generators in S208
(1 27)(2 151)(3 29)(4 153)(5 31)(6 155)(7 33)(8 105)(9 35)(10 107)(11 37)(12 109)(13 39)(14 111)(15 41)(16 113)(17 43)(18 115)(19 45)(20 117)(21 47)(22 119)(23 49)(24 121)(25 51)(26 123)(28 125)(30 127)(32 129)(34 131)(36 133)(38 135)(40 137)(42 139)(44 141)(46 143)(48 145)(50 147)(52 149)(53 79)(54 162)(55 81)(56 164)(57 83)(58 166)(59 85)(60 168)(61 87)(62 170)(63 89)(64 172)(65 91)(66 174)(67 93)(68 176)(69 95)(70 178)(71 97)(72 180)(73 99)(74 182)(75 101)(76 184)(77 103)(78 186)(80 188)(82 190)(84 192)(86 194)(88 196)(90 198)(92 200)(94 202)(96 204)(98 206)(100 208)(102 158)(104 160)(106 132)(108 134)(110 136)(112 138)(114 140)(116 142)(118 144)(120 146)(122 148)(124 150)(126 152)(128 154)(130 156)(157 183)(159 185)(161 187)(163 189)(165 191)(167 193)(169 195)(171 197)(173 199)(175 201)(177 203)(179 205)(181 207)
(1 124)(2 125)(3 126)(4 127)(5 128)(6 129)(7 130)(8 131)(9 132)(10 133)(11 134)(12 135)(13 136)(14 137)(15 138)(16 139)(17 140)(18 141)(19 142)(20 143)(21 144)(22 145)(23 146)(24 147)(25 148)(26 149)(27 150)(28 151)(29 152)(30 153)(31 154)(32 155)(33 156)(34 105)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(41 112)(42 113)(43 114)(44 115)(45 116)(46 117)(47 118)(48 119)(49 120)(50 121)(51 122)(52 123)(53 187)(54 188)(55 189)(56 190)(57 191)(58 192)(59 193)(60 194)(61 195)(62 196)(63 197)(64 198)(65 199)(66 200)(67 201)(68 202)(69 203)(70 204)(71 205)(72 206)(73 207)(74 208)(75 157)(76 158)(77 159)(78 160)(79 161)(80 162)(81 163)(82 164)(83 165)(84 166)(85 167)(86 168)(87 169)(88 170)(89 171)(90 172)(91 173)(92 174)(93 175)(94 176)(95 177)(96 178)(97 179)(98 180)(99 181)(100 182)(101 183)(102 184)(103 185)(104 186)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 173 27 199)(2 172 28 198)(3 171 29 197)(4 170 30 196)(5 169 31 195)(6 168 32 194)(7 167 33 193)(8 166 34 192)(9 165 35 191)(10 164 36 190)(11 163 37 189)(12 162 38 188)(13 161 39 187)(14 160 40 186)(15 159 41 185)(16 158 42 184)(17 157 43 183)(18 208 44 182)(19 207 45 181)(20 206 46 180)(21 205 47 179)(22 204 48 178)(23 203 49 177)(24 202 50 176)(25 201 51 175)(26 200 52 174)(53 136 79 110)(54 135 80 109)(55 134 81 108)(56 133 82 107)(57 132 83 106)(58 131 84 105)(59 130 85 156)(60 129 86 155)(61 128 87 154)(62 127 88 153)(63 126 89 152)(64 125 90 151)(65 124 91 150)(66 123 92 149)(67 122 93 148)(68 121 94 147)(69 120 95 146)(70 119 96 145)(71 118 97 144)(72 117 98 143)(73 116 99 142)(74 115 100 141)(75 114 101 140)(76 113 102 139)(77 112 103 138)(78 111 104 137)

G:=sub<Sym(208)| (1,27)(2,151)(3,29)(4,153)(5,31)(6,155)(7,33)(8,105)(9,35)(10,107)(11,37)(12,109)(13,39)(14,111)(15,41)(16,113)(17,43)(18,115)(19,45)(20,117)(21,47)(22,119)(23,49)(24,121)(25,51)(26,123)(28,125)(30,127)(32,129)(34,131)(36,133)(38,135)(40,137)(42,139)(44,141)(46,143)(48,145)(50,147)(52,149)(53,79)(54,162)(55,81)(56,164)(57,83)(58,166)(59,85)(60,168)(61,87)(62,170)(63,89)(64,172)(65,91)(66,174)(67,93)(68,176)(69,95)(70,178)(71,97)(72,180)(73,99)(74,182)(75,101)(76,184)(77,103)(78,186)(80,188)(82,190)(84,192)(86,194)(88,196)(90,198)(92,200)(94,202)(96,204)(98,206)(100,208)(102,158)(104,160)(106,132)(108,134)(110,136)(112,138)(114,140)(116,142)(118,144)(120,146)(122,148)(124,150)(126,152)(128,154)(130,156)(157,183)(159,185)(161,187)(163,189)(165,191)(167,193)(169,195)(171,197)(173,199)(175,201)(177,203)(179,205)(181,207), (1,124)(2,125)(3,126)(4,127)(5,128)(6,129)(7,130)(8,131)(9,132)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,140)(18,141)(19,142)(20,143)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,120)(50,121)(51,122)(52,123)(53,187)(54,188)(55,189)(56,190)(57,191)(58,192)(59,193)(60,194)(61,195)(62,196)(63,197)(64,198)(65,199)(66,200)(67,201)(68,202)(69,203)(70,204)(71,205)(72,206)(73,207)(74,208)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(85,167)(86,168)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,185)(104,186), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,173,27,199)(2,172,28,198)(3,171,29,197)(4,170,30,196)(5,169,31,195)(6,168,32,194)(7,167,33,193)(8,166,34,192)(9,165,35,191)(10,164,36,190)(11,163,37,189)(12,162,38,188)(13,161,39,187)(14,160,40,186)(15,159,41,185)(16,158,42,184)(17,157,43,183)(18,208,44,182)(19,207,45,181)(20,206,46,180)(21,205,47,179)(22,204,48,178)(23,203,49,177)(24,202,50,176)(25,201,51,175)(26,200,52,174)(53,136,79,110)(54,135,80,109)(55,134,81,108)(56,133,82,107)(57,132,83,106)(58,131,84,105)(59,130,85,156)(60,129,86,155)(61,128,87,154)(62,127,88,153)(63,126,89,152)(64,125,90,151)(65,124,91,150)(66,123,92,149)(67,122,93,148)(68,121,94,147)(69,120,95,146)(70,119,96,145)(71,118,97,144)(72,117,98,143)(73,116,99,142)(74,115,100,141)(75,114,101,140)(76,113,102,139)(77,112,103,138)(78,111,104,137)>;

G:=Group( (1,27)(2,151)(3,29)(4,153)(5,31)(6,155)(7,33)(8,105)(9,35)(10,107)(11,37)(12,109)(13,39)(14,111)(15,41)(16,113)(17,43)(18,115)(19,45)(20,117)(21,47)(22,119)(23,49)(24,121)(25,51)(26,123)(28,125)(30,127)(32,129)(34,131)(36,133)(38,135)(40,137)(42,139)(44,141)(46,143)(48,145)(50,147)(52,149)(53,79)(54,162)(55,81)(56,164)(57,83)(58,166)(59,85)(60,168)(61,87)(62,170)(63,89)(64,172)(65,91)(66,174)(67,93)(68,176)(69,95)(70,178)(71,97)(72,180)(73,99)(74,182)(75,101)(76,184)(77,103)(78,186)(80,188)(82,190)(84,192)(86,194)(88,196)(90,198)(92,200)(94,202)(96,204)(98,206)(100,208)(102,158)(104,160)(106,132)(108,134)(110,136)(112,138)(114,140)(116,142)(118,144)(120,146)(122,148)(124,150)(126,152)(128,154)(130,156)(157,183)(159,185)(161,187)(163,189)(165,191)(167,193)(169,195)(171,197)(173,199)(175,201)(177,203)(179,205)(181,207), (1,124)(2,125)(3,126)(4,127)(5,128)(6,129)(7,130)(8,131)(9,132)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,140)(18,141)(19,142)(20,143)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,120)(50,121)(51,122)(52,123)(53,187)(54,188)(55,189)(56,190)(57,191)(58,192)(59,193)(60,194)(61,195)(62,196)(63,197)(64,198)(65,199)(66,200)(67,201)(68,202)(69,203)(70,204)(71,205)(72,206)(73,207)(74,208)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(85,167)(86,168)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,185)(104,186), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,173,27,199)(2,172,28,198)(3,171,29,197)(4,170,30,196)(5,169,31,195)(6,168,32,194)(7,167,33,193)(8,166,34,192)(9,165,35,191)(10,164,36,190)(11,163,37,189)(12,162,38,188)(13,161,39,187)(14,160,40,186)(15,159,41,185)(16,158,42,184)(17,157,43,183)(18,208,44,182)(19,207,45,181)(20,206,46,180)(21,205,47,179)(22,204,48,178)(23,203,49,177)(24,202,50,176)(25,201,51,175)(26,200,52,174)(53,136,79,110)(54,135,80,109)(55,134,81,108)(56,133,82,107)(57,132,83,106)(58,131,84,105)(59,130,85,156)(60,129,86,155)(61,128,87,154)(62,127,88,153)(63,126,89,152)(64,125,90,151)(65,124,91,150)(66,123,92,149)(67,122,93,148)(68,121,94,147)(69,120,95,146)(70,119,96,145)(71,118,97,144)(72,117,98,143)(73,116,99,142)(74,115,100,141)(75,114,101,140)(76,113,102,139)(77,112,103,138)(78,111,104,137) );

G=PermutationGroup([[(1,27),(2,151),(3,29),(4,153),(5,31),(6,155),(7,33),(8,105),(9,35),(10,107),(11,37),(12,109),(13,39),(14,111),(15,41),(16,113),(17,43),(18,115),(19,45),(20,117),(21,47),(22,119),(23,49),(24,121),(25,51),(26,123),(28,125),(30,127),(32,129),(34,131),(36,133),(38,135),(40,137),(42,139),(44,141),(46,143),(48,145),(50,147),(52,149),(53,79),(54,162),(55,81),(56,164),(57,83),(58,166),(59,85),(60,168),(61,87),(62,170),(63,89),(64,172),(65,91),(66,174),(67,93),(68,176),(69,95),(70,178),(71,97),(72,180),(73,99),(74,182),(75,101),(76,184),(77,103),(78,186),(80,188),(82,190),(84,192),(86,194),(88,196),(90,198),(92,200),(94,202),(96,204),(98,206),(100,208),(102,158),(104,160),(106,132),(108,134),(110,136),(112,138),(114,140),(116,142),(118,144),(120,146),(122,148),(124,150),(126,152),(128,154),(130,156),(157,183),(159,185),(161,187),(163,189),(165,191),(167,193),(169,195),(171,197),(173,199),(175,201),(177,203),(179,205),(181,207)], [(1,124),(2,125),(3,126),(4,127),(5,128),(6,129),(7,130),(8,131),(9,132),(10,133),(11,134),(12,135),(13,136),(14,137),(15,138),(16,139),(17,140),(18,141),(19,142),(20,143),(21,144),(22,145),(23,146),(24,147),(25,148),(26,149),(27,150),(28,151),(29,152),(30,153),(31,154),(32,155),(33,156),(34,105),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(41,112),(42,113),(43,114),(44,115),(45,116),(46,117),(47,118),(48,119),(49,120),(50,121),(51,122),(52,123),(53,187),(54,188),(55,189),(56,190),(57,191),(58,192),(59,193),(60,194),(61,195),(62,196),(63,197),(64,198),(65,199),(66,200),(67,201),(68,202),(69,203),(70,204),(71,205),(72,206),(73,207),(74,208),(75,157),(76,158),(77,159),(78,160),(79,161),(80,162),(81,163),(82,164),(83,165),(84,166),(85,167),(86,168),(87,169),(88,170),(89,171),(90,172),(91,173),(92,174),(93,175),(94,176),(95,177),(96,178),(97,179),(98,180),(99,181),(100,182),(101,183),(102,184),(103,185),(104,186)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,173,27,199),(2,172,28,198),(3,171,29,197),(4,170,30,196),(5,169,31,195),(6,168,32,194),(7,167,33,193),(8,166,34,192),(9,165,35,191),(10,164,36,190),(11,163,37,189),(12,162,38,188),(13,161,39,187),(14,160,40,186),(15,159,41,185),(16,158,42,184),(17,157,43,183),(18,208,44,182),(19,207,45,181),(20,206,46,180),(21,205,47,179),(22,204,48,178),(23,203,49,177),(24,202,50,176),(25,201,51,175),(26,200,52,174),(53,136,79,110),(54,135,80,109),(55,134,81,108),(56,133,82,107),(57,132,83,106),(58,131,84,105),(59,130,85,156),(60,129,86,155),(61,128,87,154),(62,127,88,153),(63,126,89,152),(64,125,90,151),(65,124,91,150),(66,123,92,149),(67,122,93,148),(68,121,94,147),(69,120,95,146),(70,119,96,145),(71,118,97,144),(72,117,98,143),(73,116,99,142),(74,115,100,141),(75,114,101,140),(76,113,102,139),(77,112,103,138),(78,111,104,137)]])

74 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H13A···13F26A···26R26S···26AD52A···52X
order1222224444444413···1326···2626···2652···52
size111122442626262652522···22···24···44···4

74 irreducible representations

dim1111111222222244
type++++++++-+++-+-
imageC1C2C2C2C2C2C2D4Q8C4○D4D13D26D26Dic26D4×D13D42D13
kernelC22⋊Dic26C26.D4C523C4C23.D13C13×C22⋊C4C2×Dic26C22×Dic13Dic13C2×C26C26C22⋊C4C2×C4C23C22C2C2
# reps121111122261262466

Matrix representation of C22⋊Dic26 in GL6(𝔽53)

100000
010000
0052000
0005200
0000520
000001
,
100000
010000
001000
000100
0000520
0000052
,
9520000
51180000
006800
0024700
000001
0000520
,
45100000
5280000
0021500
0073200
0000230
0000030

G:=sub<GL(6,GF(53))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,52,0,0,0,0,0,0,52,0,0,0,0,0,0,52,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,52,0,0,0,0,0,0,52],[9,51,0,0,0,0,52,18,0,0,0,0,0,0,6,2,0,0,0,0,8,47,0,0,0,0,0,0,0,52,0,0,0,0,1,0],[45,52,0,0,0,0,10,8,0,0,0,0,0,0,21,7,0,0,0,0,5,32,0,0,0,0,0,0,23,0,0,0,0,0,0,30] >;

C22⋊Dic26 in GAP, Magma, Sage, TeX

C_2^2\rtimes {\rm Dic}_{26}
% in TeX

G:=Group("C2^2:Dic26");
// GroupNames label

G:=SmallGroup(416,99);
// by ID

G=gap.SmallGroup(416,99);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,48,218,188,50,13829]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^52=1,d^2=c^26,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽