metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22⋊1Dic26, C23.12D26, Dic13.14D4, (C2×C26)⋊Q8, C52⋊3C4⋊2C2, (C2×C4).5D26, C2.6(D4×D13), C26.4(C2×Q8), C26.16(C2×D4), C13⋊1(C22⋊Q8), (C2×Dic26)⋊2C2, C26.D4⋊4C2, (C2×C52).1C22, C22⋊C4.1D13, C2.6(C2×Dic26), C26.21(C4○D4), (C2×C26).19C23, C23.D13.2C2, C2.6(D4⋊2D13), (C22×C26).8C22, (C2×Dic13).5C22, (C22×Dic13).3C2, C22.39(C22×D13), (C13×C22⋊C4).1C2, SmallGroup(416,99)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22⋊Dic26
G = < a,b,c,d | a2=b2=c52=1, d2=c26, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 424 in 74 conjugacy classes, 35 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C13, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C26, C26, C22⋊Q8, Dic13, Dic13, C52, C2×C26, C2×C26, C2×C26, Dic26, C2×Dic13, C2×Dic13, C2×C52, C22×C26, C26.D4, C52⋊3C4, C23.D13, C13×C22⋊C4, C2×Dic26, C22×Dic13, C22⋊Dic26
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, D13, C22⋊Q8, D26, Dic26, C22×D13, C2×Dic26, D4×D13, D4⋊2D13, C22⋊Dic26
(1 27)(2 151)(3 29)(4 153)(5 31)(6 155)(7 33)(8 105)(9 35)(10 107)(11 37)(12 109)(13 39)(14 111)(15 41)(16 113)(17 43)(18 115)(19 45)(20 117)(21 47)(22 119)(23 49)(24 121)(25 51)(26 123)(28 125)(30 127)(32 129)(34 131)(36 133)(38 135)(40 137)(42 139)(44 141)(46 143)(48 145)(50 147)(52 149)(53 79)(54 162)(55 81)(56 164)(57 83)(58 166)(59 85)(60 168)(61 87)(62 170)(63 89)(64 172)(65 91)(66 174)(67 93)(68 176)(69 95)(70 178)(71 97)(72 180)(73 99)(74 182)(75 101)(76 184)(77 103)(78 186)(80 188)(82 190)(84 192)(86 194)(88 196)(90 198)(92 200)(94 202)(96 204)(98 206)(100 208)(102 158)(104 160)(106 132)(108 134)(110 136)(112 138)(114 140)(116 142)(118 144)(120 146)(122 148)(124 150)(126 152)(128 154)(130 156)(157 183)(159 185)(161 187)(163 189)(165 191)(167 193)(169 195)(171 197)(173 199)(175 201)(177 203)(179 205)(181 207)
(1 124)(2 125)(3 126)(4 127)(5 128)(6 129)(7 130)(8 131)(9 132)(10 133)(11 134)(12 135)(13 136)(14 137)(15 138)(16 139)(17 140)(18 141)(19 142)(20 143)(21 144)(22 145)(23 146)(24 147)(25 148)(26 149)(27 150)(28 151)(29 152)(30 153)(31 154)(32 155)(33 156)(34 105)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(41 112)(42 113)(43 114)(44 115)(45 116)(46 117)(47 118)(48 119)(49 120)(50 121)(51 122)(52 123)(53 187)(54 188)(55 189)(56 190)(57 191)(58 192)(59 193)(60 194)(61 195)(62 196)(63 197)(64 198)(65 199)(66 200)(67 201)(68 202)(69 203)(70 204)(71 205)(72 206)(73 207)(74 208)(75 157)(76 158)(77 159)(78 160)(79 161)(80 162)(81 163)(82 164)(83 165)(84 166)(85 167)(86 168)(87 169)(88 170)(89 171)(90 172)(91 173)(92 174)(93 175)(94 176)(95 177)(96 178)(97 179)(98 180)(99 181)(100 182)(101 183)(102 184)(103 185)(104 186)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 173 27 199)(2 172 28 198)(3 171 29 197)(4 170 30 196)(5 169 31 195)(6 168 32 194)(7 167 33 193)(8 166 34 192)(9 165 35 191)(10 164 36 190)(11 163 37 189)(12 162 38 188)(13 161 39 187)(14 160 40 186)(15 159 41 185)(16 158 42 184)(17 157 43 183)(18 208 44 182)(19 207 45 181)(20 206 46 180)(21 205 47 179)(22 204 48 178)(23 203 49 177)(24 202 50 176)(25 201 51 175)(26 200 52 174)(53 136 79 110)(54 135 80 109)(55 134 81 108)(56 133 82 107)(57 132 83 106)(58 131 84 105)(59 130 85 156)(60 129 86 155)(61 128 87 154)(62 127 88 153)(63 126 89 152)(64 125 90 151)(65 124 91 150)(66 123 92 149)(67 122 93 148)(68 121 94 147)(69 120 95 146)(70 119 96 145)(71 118 97 144)(72 117 98 143)(73 116 99 142)(74 115 100 141)(75 114 101 140)(76 113 102 139)(77 112 103 138)(78 111 104 137)
G:=sub<Sym(208)| (1,27)(2,151)(3,29)(4,153)(5,31)(6,155)(7,33)(8,105)(9,35)(10,107)(11,37)(12,109)(13,39)(14,111)(15,41)(16,113)(17,43)(18,115)(19,45)(20,117)(21,47)(22,119)(23,49)(24,121)(25,51)(26,123)(28,125)(30,127)(32,129)(34,131)(36,133)(38,135)(40,137)(42,139)(44,141)(46,143)(48,145)(50,147)(52,149)(53,79)(54,162)(55,81)(56,164)(57,83)(58,166)(59,85)(60,168)(61,87)(62,170)(63,89)(64,172)(65,91)(66,174)(67,93)(68,176)(69,95)(70,178)(71,97)(72,180)(73,99)(74,182)(75,101)(76,184)(77,103)(78,186)(80,188)(82,190)(84,192)(86,194)(88,196)(90,198)(92,200)(94,202)(96,204)(98,206)(100,208)(102,158)(104,160)(106,132)(108,134)(110,136)(112,138)(114,140)(116,142)(118,144)(120,146)(122,148)(124,150)(126,152)(128,154)(130,156)(157,183)(159,185)(161,187)(163,189)(165,191)(167,193)(169,195)(171,197)(173,199)(175,201)(177,203)(179,205)(181,207), (1,124)(2,125)(3,126)(4,127)(5,128)(6,129)(7,130)(8,131)(9,132)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,140)(18,141)(19,142)(20,143)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,120)(50,121)(51,122)(52,123)(53,187)(54,188)(55,189)(56,190)(57,191)(58,192)(59,193)(60,194)(61,195)(62,196)(63,197)(64,198)(65,199)(66,200)(67,201)(68,202)(69,203)(70,204)(71,205)(72,206)(73,207)(74,208)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(85,167)(86,168)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,185)(104,186), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,173,27,199)(2,172,28,198)(3,171,29,197)(4,170,30,196)(5,169,31,195)(6,168,32,194)(7,167,33,193)(8,166,34,192)(9,165,35,191)(10,164,36,190)(11,163,37,189)(12,162,38,188)(13,161,39,187)(14,160,40,186)(15,159,41,185)(16,158,42,184)(17,157,43,183)(18,208,44,182)(19,207,45,181)(20,206,46,180)(21,205,47,179)(22,204,48,178)(23,203,49,177)(24,202,50,176)(25,201,51,175)(26,200,52,174)(53,136,79,110)(54,135,80,109)(55,134,81,108)(56,133,82,107)(57,132,83,106)(58,131,84,105)(59,130,85,156)(60,129,86,155)(61,128,87,154)(62,127,88,153)(63,126,89,152)(64,125,90,151)(65,124,91,150)(66,123,92,149)(67,122,93,148)(68,121,94,147)(69,120,95,146)(70,119,96,145)(71,118,97,144)(72,117,98,143)(73,116,99,142)(74,115,100,141)(75,114,101,140)(76,113,102,139)(77,112,103,138)(78,111,104,137)>;
G:=Group( (1,27)(2,151)(3,29)(4,153)(5,31)(6,155)(7,33)(8,105)(9,35)(10,107)(11,37)(12,109)(13,39)(14,111)(15,41)(16,113)(17,43)(18,115)(19,45)(20,117)(21,47)(22,119)(23,49)(24,121)(25,51)(26,123)(28,125)(30,127)(32,129)(34,131)(36,133)(38,135)(40,137)(42,139)(44,141)(46,143)(48,145)(50,147)(52,149)(53,79)(54,162)(55,81)(56,164)(57,83)(58,166)(59,85)(60,168)(61,87)(62,170)(63,89)(64,172)(65,91)(66,174)(67,93)(68,176)(69,95)(70,178)(71,97)(72,180)(73,99)(74,182)(75,101)(76,184)(77,103)(78,186)(80,188)(82,190)(84,192)(86,194)(88,196)(90,198)(92,200)(94,202)(96,204)(98,206)(100,208)(102,158)(104,160)(106,132)(108,134)(110,136)(112,138)(114,140)(116,142)(118,144)(120,146)(122,148)(124,150)(126,152)(128,154)(130,156)(157,183)(159,185)(161,187)(163,189)(165,191)(167,193)(169,195)(171,197)(173,199)(175,201)(177,203)(179,205)(181,207), (1,124)(2,125)(3,126)(4,127)(5,128)(6,129)(7,130)(8,131)(9,132)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,140)(18,141)(19,142)(20,143)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,120)(50,121)(51,122)(52,123)(53,187)(54,188)(55,189)(56,190)(57,191)(58,192)(59,193)(60,194)(61,195)(62,196)(63,197)(64,198)(65,199)(66,200)(67,201)(68,202)(69,203)(70,204)(71,205)(72,206)(73,207)(74,208)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(85,167)(86,168)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,185)(104,186), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,173,27,199)(2,172,28,198)(3,171,29,197)(4,170,30,196)(5,169,31,195)(6,168,32,194)(7,167,33,193)(8,166,34,192)(9,165,35,191)(10,164,36,190)(11,163,37,189)(12,162,38,188)(13,161,39,187)(14,160,40,186)(15,159,41,185)(16,158,42,184)(17,157,43,183)(18,208,44,182)(19,207,45,181)(20,206,46,180)(21,205,47,179)(22,204,48,178)(23,203,49,177)(24,202,50,176)(25,201,51,175)(26,200,52,174)(53,136,79,110)(54,135,80,109)(55,134,81,108)(56,133,82,107)(57,132,83,106)(58,131,84,105)(59,130,85,156)(60,129,86,155)(61,128,87,154)(62,127,88,153)(63,126,89,152)(64,125,90,151)(65,124,91,150)(66,123,92,149)(67,122,93,148)(68,121,94,147)(69,120,95,146)(70,119,96,145)(71,118,97,144)(72,117,98,143)(73,116,99,142)(74,115,100,141)(75,114,101,140)(76,113,102,139)(77,112,103,138)(78,111,104,137) );
G=PermutationGroup([[(1,27),(2,151),(3,29),(4,153),(5,31),(6,155),(7,33),(8,105),(9,35),(10,107),(11,37),(12,109),(13,39),(14,111),(15,41),(16,113),(17,43),(18,115),(19,45),(20,117),(21,47),(22,119),(23,49),(24,121),(25,51),(26,123),(28,125),(30,127),(32,129),(34,131),(36,133),(38,135),(40,137),(42,139),(44,141),(46,143),(48,145),(50,147),(52,149),(53,79),(54,162),(55,81),(56,164),(57,83),(58,166),(59,85),(60,168),(61,87),(62,170),(63,89),(64,172),(65,91),(66,174),(67,93),(68,176),(69,95),(70,178),(71,97),(72,180),(73,99),(74,182),(75,101),(76,184),(77,103),(78,186),(80,188),(82,190),(84,192),(86,194),(88,196),(90,198),(92,200),(94,202),(96,204),(98,206),(100,208),(102,158),(104,160),(106,132),(108,134),(110,136),(112,138),(114,140),(116,142),(118,144),(120,146),(122,148),(124,150),(126,152),(128,154),(130,156),(157,183),(159,185),(161,187),(163,189),(165,191),(167,193),(169,195),(171,197),(173,199),(175,201),(177,203),(179,205),(181,207)], [(1,124),(2,125),(3,126),(4,127),(5,128),(6,129),(7,130),(8,131),(9,132),(10,133),(11,134),(12,135),(13,136),(14,137),(15,138),(16,139),(17,140),(18,141),(19,142),(20,143),(21,144),(22,145),(23,146),(24,147),(25,148),(26,149),(27,150),(28,151),(29,152),(30,153),(31,154),(32,155),(33,156),(34,105),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(41,112),(42,113),(43,114),(44,115),(45,116),(46,117),(47,118),(48,119),(49,120),(50,121),(51,122),(52,123),(53,187),(54,188),(55,189),(56,190),(57,191),(58,192),(59,193),(60,194),(61,195),(62,196),(63,197),(64,198),(65,199),(66,200),(67,201),(68,202),(69,203),(70,204),(71,205),(72,206),(73,207),(74,208),(75,157),(76,158),(77,159),(78,160),(79,161),(80,162),(81,163),(82,164),(83,165),(84,166),(85,167),(86,168),(87,169),(88,170),(89,171),(90,172),(91,173),(92,174),(93,175),(94,176),(95,177),(96,178),(97,179),(98,180),(99,181),(100,182),(101,183),(102,184),(103,185),(104,186)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,173,27,199),(2,172,28,198),(3,171,29,197),(4,170,30,196),(5,169,31,195),(6,168,32,194),(7,167,33,193),(8,166,34,192),(9,165,35,191),(10,164,36,190),(11,163,37,189),(12,162,38,188),(13,161,39,187),(14,160,40,186),(15,159,41,185),(16,158,42,184),(17,157,43,183),(18,208,44,182),(19,207,45,181),(20,206,46,180),(21,205,47,179),(22,204,48,178),(23,203,49,177),(24,202,50,176),(25,201,51,175),(26,200,52,174),(53,136,79,110),(54,135,80,109),(55,134,81,108),(56,133,82,107),(57,132,83,106),(58,131,84,105),(59,130,85,156),(60,129,86,155),(61,128,87,154),(62,127,88,153),(63,126,89,152),(64,125,90,151),(65,124,91,150),(66,123,92,149),(67,122,93,148),(68,121,94,147),(69,120,95,146),(70,119,96,145),(71,118,97,144),(72,117,98,143),(73,116,99,142),(74,115,100,141),(75,114,101,140),(76,113,102,139),(77,112,103,138),(78,111,104,137)]])
74 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 13A | ··· | 13F | 26A | ··· | 26R | 26S | ··· | 26AD | 52A | ··· | 52X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 13 | ··· | 13 | 26 | ··· | 26 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 26 | 26 | 26 | 26 | 52 | 52 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
74 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | C4○D4 | D13 | D26 | D26 | Dic26 | D4×D13 | D4⋊2D13 |
kernel | C22⋊Dic26 | C26.D4 | C52⋊3C4 | C23.D13 | C13×C22⋊C4 | C2×Dic26 | C22×Dic13 | Dic13 | C2×C26 | C26 | C22⋊C4 | C2×C4 | C23 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 6 | 12 | 6 | 24 | 6 | 6 |
Matrix representation of C22⋊Dic26 ►in GL6(𝔽53)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 52 | 0 | 0 | 0 |
0 | 0 | 0 | 52 | 0 | 0 |
0 | 0 | 0 | 0 | 52 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 52 | 0 |
0 | 0 | 0 | 0 | 0 | 52 |
9 | 52 | 0 | 0 | 0 | 0 |
51 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 8 | 0 | 0 |
0 | 0 | 2 | 47 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 52 | 0 |
45 | 10 | 0 | 0 | 0 | 0 |
52 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 21 | 5 | 0 | 0 |
0 | 0 | 7 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 23 | 0 |
0 | 0 | 0 | 0 | 0 | 30 |
G:=sub<GL(6,GF(53))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,52,0,0,0,0,0,0,52,0,0,0,0,0,0,52,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,52,0,0,0,0,0,0,52],[9,51,0,0,0,0,52,18,0,0,0,0,0,0,6,2,0,0,0,0,8,47,0,0,0,0,0,0,0,52,0,0,0,0,1,0],[45,52,0,0,0,0,10,8,0,0,0,0,0,0,21,7,0,0,0,0,5,32,0,0,0,0,0,0,23,0,0,0,0,0,0,30] >;
C22⋊Dic26 in GAP, Magma, Sage, TeX
C_2^2\rtimes {\rm Dic}_{26}
% in TeX
G:=Group("C2^2:Dic26");
// GroupNames label
G:=SmallGroup(416,99);
// by ID
G=gap.SmallGroup(416,99);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,48,218,188,50,13829]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^52=1,d^2=c^26,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations